The Genetics of Pregnancy Loss

Stephanie Romero, MD
Maternal Fetal Medicine Fellow
Clinical Assistant Professor, University of Utah
Association of Genetic Technologists Annual Meeting, Las Vegas, NV
June 9, 2013

Disclosures

• None

GENETICS
This is How it Works
Objectives

• Review the current technology available for genetic testing in pregnancy loss
• Review the literature regarding incidence of genetic abnormalities in pregnancy loss
• Review recommendations for testing patients with pregnancy loss

Patient Example

• Mrs. Lopez is a 22 year old G1P0 who comes for her first prenatal visit. She has no medical issues. Today, she is 9 weeks gestation by last menstrual period (LMP). You perform an ultrasound – and find an embryo with no cardiac activity, crown-rump length measurement consistent with 8 weeks gestation.
• What do you do for this patient?

What kinds of genetic testing can be done for pregnancy loss?
Step 1 – obtain the sample

Tissue biopsy
Amniocentesis

Karyotype has an 80-100% success rate from amniotic fluid obtained before delivery, 10-30% from skin or umbilical cord, and ~40% for fascia.

Step 2 - analyze the sample

Karyotype
Step 2 - analyze the sample

Karyotype

Pitfalls of karyotype

• Takes 14 days
• Requires live cells for culture
• Normal maternal cells can overgrow abnormal fetal cells
• Doesn’t catch small deletions or duplications that can be very significant

Benefits of karyotype

• Many years of experience with the technology
• Very accurate for aneuploidy
• Relatively inexpensive
Step 2 – Analyze the sample

FISH

Benefits and Pitfalls of FISH

• Of limited utility – helpful when karyotype fails, because it can be done from preserved tissue blocks
• Can only detect what you actively look for; you decide what probes you will use (common trisomies, etc)

Single gene disorders

• Several are associated with stillbirth – hemoglobinopathies, metabolic disorders
• Concern increased if consanguinity
• If predominantly male fetuses lost – consider X-linked disorders (Rett)
Step 2 – Analyze the sample

Microarray

DNA fragmentation and ligation of adapters, PCR amplification, labeling, hybridization, wash to remove unbound DNA →
Scanning and file conversion →
Interpretation using specialized software

Microarray

Benefits of microarray

- Detects very small deletions/duplications and LOH
- Does not require live tissue
- Results available in 7 days
- Very accurate
 - SNP/oligo arrays have improved sensitivity over CGH
Pitfalls of microarray

- Does not detect balanced translocations
- Does not detect tetraploidy
- Some of the findings fall under “VOUS” – variant of unknown significance
- $$

Pitfalls of microarray - VOUS

- Dependent on parameters for “calls”
 - NEJM Stillbirth study - >500kb
 - Ongoing study in loss <20 weeks: software flags at deletions >50kb, duplications >200kb
- Calls compared against databases
 - OMIM
 - Database of Genomic Variants

Pitfalls of microarray – ethical concerns

- Accidental findings (Huntington’s, BRCA)
- Uncertainty of results can be distressing to patients – “Toxic Knowledge”
Other testing

- Whole genome sequencing – not yet widely available, experimental

Testing - Review

Testing summary

- Tissue: amniotic fluid preferred over biopsy
- Testing options:
 - Karyotype/ FISH
 - Microarray
 - Others?
Why do any of these tests?

- Let’s review the available information about incidence of genetic abnormalities in pregnancy loss

Risk factors for chromosomal abnormalities

- Increasing maternal age
- Anatomic abnormalities in the abortus
- Growth restricted on ultrasound

Pre-embryonic and Embryonic losses: <10 weeks gestation

<table>
<thead>
<tr>
<th>Type</th>
<th>Approximate proportion of abnormal karyotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aneuploidy</td>
<td></td>
</tr>
<tr>
<td>Autosomal trisomy</td>
<td></td>
</tr>
<tr>
<td>Autosomal monosomy</td>
<td></td>
</tr>
<tr>
<td>45, X</td>
<td></td>
</tr>
<tr>
<td>Triploidy</td>
<td>16%</td>
</tr>
<tr>
<td>Tetraploidy</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>7%</td>
</tr>
</tbody>
</table>
Fetal loss (10-20 weeks)

- Chromosomal abnormalities in 6% to 12%
- Higher in fetuses with structural abnormalities
- Most common: aneuploidy (with the most common being Trisomy 21, 18, and 13; others still present)
- If normal karyotype in fetus but abnormality in the placenta (Confined Placental Mosaicism) – severe IUGR, fetal death
 - Higher risk if AMA
 - Can be from mitotic nondisjunction

Losses at or beyond 20 weeks: Stillbirth

Karyotype versus Microarray Testing for Genetic Abnormalities after Stillbirth

[Image of journal article]
Results

• 532 stillbirths had both karyotype and microarray done
• 70.5% of karyotypes worked; 8.3% of those were abnormal
 – In cases of karyotype failure (N=157), microarray was successful in 86% (N=135)
• 87.4% of microarrays worked; 9.5% were abnormal, 5.4% were VOUS (so possibly abnormal)
 – In cases of microarray failure (N=67), karyotype was successful in 67.2% (N=45)

Ongoing research

• Enrolling patients with pregnancy loss <20 weeks gestation
• Aim is to compare rates of genetic abnormalities across 3 different periods of gestation – pre-embryonic, embryonic, and fetal
• Using microarray (Affymetrix CytoScan Array) for analysis of products of conception
• Collecting parental DNA and analyzing the triad for further information in cases of VOUS in the POC’s
Ongoing research

- Preliminary results (out of 85 enrolled):
 - 36 normal
 - 13 trisomies (22 [2], 21, 18[2], 16 [1], 15 [1], 13[2], 9 [1], 8 [2], X[1-mosaic])
 - 1 monosomy X
 - 4 triploid

Ongoing research

- VOUS
 - 31 total
 - 3 with questionable significance (also aneuploid)
 - 3 in HOX genes, others in regions of possible interest –
 will review with research team after recruitment completed
 - 15 with no result
 - 3 arrays failed
 - 12 no POCs in tissue brought from home

Incidence of genetic abnormalities in pregnancy loss - Review

- Highest in early losses
- More common in later losses if fetal anomalies present
- More common with advancing maternal age
- Single gene disorders can also be associated with loss
So what should I do for Mrs. Lopez?

- Let’s review the recommendations regarding genetic testing in pregnancy loss

Mrs. Lopez

- G1P0 with no medical issues, first pregnancy ends in an embryonic loss
 - No testing necessary
 - Some authors advocate for testing even in sporadic loss, to help families obtain closure, individualized prognosis for future pregnancies
 - With sporadic loss in early 1st trimester – recurrence risk is 12-14%

What about Mrs. Lopez’s cousins?

- What if this was her 3rd loss?
 - Recurrent Pregnancy Loss (RPL) is defined in obstetrics as three embryonic or fetal deaths which are not iatrogenic and having the same paternity, with no more than one live birth
 - Recommend genetic evaluation, both of the parents (looking for translocations) and products of conception
 - Thorough history is important
What about Mrs. Lopez’s cousins?

- What if she were >10 weeks (fetal loss)?
 - Genetic evaluation as part of workup recommended
 - Consider microarray, particularly if anomalies noted on ultrasound

References

Questions?

Thank you!