Overview of the new AMA Molecular Pathology CPT codes

V.M. Pratt, PhD, FACMG
Indiana University School of Medicine

Reimbursement and CPT codes
- CPT code ≠ reimbursement
- List of services

CPT CODES
Before January 1, 2013

- Used Molecular “stacking” CPT codes to get reimbursed

 Each step of test utilized a different CPT code to create a “stack”

Creation of New AMA CPT codes for MolPath

- Tier 1
- Tier 2
- Multianalyte Assays with Algorithmic Analyses (MAAAs)

Why the new Molpath CPT codes?

- Payers wanted to know for what they were paying
- Needed clear and granular system
Relative Laboratory Testing Percentages

- Large reference laboratories
- Medium reference laboratories

Relative Percentage of Tests from Labs

New MolPath codes

- Tier 1 = analyte specific code
- Tier 2 = level of complexity code

Current list available: ama-assn.org/resources/doc/cpt/mopath-maaa-tier1-tier2.pdf
CPT Tier 1 Descriptor

• HUGO approved gene symbol (HUGO approved gene name) (eg, disease state/condition) gene analysis; analysis type

Descriptor Caveats

• Disease state/condition is not an all inclusive list
• Common gene variant names are used
• The code includes all analytical services performed in the test (eg, cell lysis, nucleic acid stabilization, extraction, digestion, amplification, and detection)
• All analyses are qualitative unless otherwise noted

CPT Codes Tier 1 – BCR/ABL

• 81206 - BCR/ABL1 (t(9:22)) (eg, chronic myelogenous leukemia) translocation analysis; major breakpoint, qualitative or quantitative
 81207 - Minor breakpoint, qualitative or quantitative
 81208 - Other breakpoint, qualitative or quantitative
CPT Codes Tier 1 – CFTR

- **81220** - CFTR (cystic fibrosis transmembrane conductance regulator) gene analysis; common variants (eg, ACOG/ACMG guidelines)
- **81221** - Known familial variants
- **81222** - Duplication/deletion variants
- **81223** - Full gene sequence
- **81224** - Intron 8 poly T analysis (eg, male infertility)

CPT Codes Tier 1 – aCGH

- **81228** - Cytogenomic constitutional (genome-wide) microarray analysis: interrogation of genomic regions for copy number variants (eg, bacterial artificial chromosome [BAC] or oligo-based comparative genomic hybridization [CGH] microarray analysis)
- **81229** - Interrogation of genomic regions for copy number and single nucleotide polymorphism (SNP) variants for chromosomal abnormalities
 (Do not report 81228 in conjunction with 81229)

Tier 2

- Less common; lower volume assays
- Divided into 9 levels of complexity
- ~ 600 descriptors
<table>
<thead>
<tr>
<th>Tier 2; level 1</th>
<th>Identification of single germline variant [eg, SNP] by techniques such as restriction enzyme digestion or melt curve analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADM (acyl-CoA dehydrogenase, C-4 to C-12 straight chain, MCAD) (eg, medium chain acyl dehydrogenase deficiency), K304E variant</td>
<td></td>
</tr>
<tr>
<td>ACE (angiotensin converting enzyme) (eg, hereditary blood pressure regulation), insertion/deletion variant</td>
<td></td>
</tr>
<tr>
<td>AGTR1 (angiotensin II receptor, type 1) (eg, essential hypertension), insertion/deletion variant</td>
<td></td>
</tr>
<tr>
<td>BCKDHA (branched chain keto acid dehydrogenase E1, alpha polypeptide) (eg, maple syrup urine disease, type 1A), Y438N variant</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 2; level 2</th>
<th>>2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using non-sequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL (c-abl oncogene 1, receptor tyrosine kinase) (eg, acquired imatinib resistance), T315I variant</td>
<td></td>
</tr>
<tr>
<td>ACADM (acyl-CoA dehydrogenase, C-4 to C-12 straight chain, MCAD) (eg, medium chain acyl dehydrogenase deficiency), common variants (eg, K304E, Y42H)</td>
<td></td>
</tr>
<tr>
<td>ADRB2 (adrenergic beta-2 receptor surface) (eg, drug metabolism), common variants (eg, G16R, Q27E)</td>
<td></td>
</tr>
<tr>
<td>AFF2 (AF4/FMR2 family, member 2 [FMR2] (eg, fragile X mental retardation 2 [FRAXE]), evaluation to detect abnormal (eg, expanded) alleles</td>
<td></td>
</tr>
<tr>
<td>APOB (apolipoprotein B) (eg, familial hypercholesterolemia type B), common variants (eg, R3500Q, R3500W)</td>
<td></td>
</tr>
<tr>
<td>APOE (apolipoprotein E) (eg, familial hypercholesterolemia type III, cardiovascular disease, Alzheimer disease), common variants (eg, *2, *3, *4)</td>
<td></td>
</tr>
<tr>
<td>AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease), characterization of alleles (eg, expanded size or methylation status)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 2; level 3</th>
<th>>10 SNPs, 2-10 methylated variants, or 2-10 somatic variants [typically using non-sequencing target variant analysis], immunoglobulin and T-cell receptor gene rearrangements, duplication/deletion variants of 1 exon, loss of heterozygosity [LOH], uniparental disomy [UPD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 18q: (eg, D18S55, D18S58, D18S61, D18S64, and D18S699) (eg, colon cancer), allelismbalance assessment (ie, loss of heterozygosity)</td>
<td></td>
</tr>
<tr>
<td>ESR1/PGR (receptor 1/progesterone receptor) ratio (eg, breast cancer)</td>
<td></td>
</tr>
<tr>
<td>IgH@BCL2 (14q1161) (eg, follicular lymphoma) translocation analysis; major breakpoint region (MBR) and minor cluster region (mcr) breakpoints, qualitative or quantitative</td>
<td></td>
</tr>
</tbody>
</table>
81203 - Tier 2; level 4

- Analysis of single exon by DNA sequence analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent reactions, mutationscanning or duplication/deletion variants of 2-5 exons

 Known familial variant not otherwise specified, for gene listed in Tier 1 or Tier 2, DNA sequence analysis, each variant exon

 KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene) (eg, carcinoma), gene analysis, variant(s) in exon3 (eg, codon 61)

 MC4R (melanocortin 4 receptor) (eg, obesity), full gene sequence

 MICA (MHC class I polypeptide-related sequence A) (eg, solid organ transplantation), common variants (eg, *001, *002)

 MPL (myeloproliferative leukemia virus oncogene, thrombopoietin receptor, TPOR) (eg, myeloproliferative disorder), exon 10 sequence

 MT-RNR1 (mitochondrially encoded 12S RNA) (eg, nonsyndromic hearing loss), full gene sequence

81204 - Tier 2; level 5

- Analysis of 2-5 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or characterization of a dynamic mutation disorder/triplet repeat by Southern blot analysis

 ACADS (acyl-CoA dehydrogenase, C-2 to C-3 short chain) (eg, short chain acyl-CoA dehydrogenase deficiency), targeted sequence analysis (eg, exons 5 and 6)

 AFF2 (AF4/FMR2 family, member 2 (FMR2)) (eg, fragile X mental retardation 2 (FRAXE)), characterization of alleles (eg, expanded size and methylation status)

 AQP2 (aquaporin 2 [collecting duct]) (eg, nephrogenic diabetes insipidus), full gene sequence

 ARX (aristaless related homeobox) (eg, lissencephaly with ambiguous genitalia, X-linked mental retardation), full gene sequence

 AVPR2 (arginine vasopressin receptor 2) (eg, nephrogenic diabetes insipidus), full gene sequence

81205 - Tier 2; level 6

- Analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array

 CYP17A1 (cytochrome P450, family 17, subfamily A, polypeptide 1) (eg, congenital adrenal hyperplasia), full gene sequence

 CYP21A2 (cytochrome P450, family 21, subfamily A, polypeptide 2) (eg, steriod 21-hydroxylase isofrom, congenital adrenal hyperplasia), full gene sequence

 Cytogenomic constitutional targeted microarray analysis of chromosome 22q13 by interrogation oligonomic regions for copy number and single nucleotide polymorphism (SNP) variants for chromosomal abnormalities

 Cytogenomic constitutional targeted microarray analysis of the X chromosome by interrogation oligonomic regions for copy number and single nucleotide polymorphism (SNP) variants for chromosomal abnormalities

 DBT (dihydropyrimidine branched chain transacylase E2) (eg, maple syrup urine disease, type 2), duplication/deletion analysis
81206 - Tier 2; level 7

- Analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic array analysis for neoplasia

 - **CRB1** (crumbs homolog 1 [Drosophila]) (eg, Leber congenital amaurosis), full gene sequence
 - **CREBBP** (CREB binding protein) (eg, Rubinstein-Taybi syndrome), duplication/deletion analysis
 - Cytogenomic microarray analysis, neoplasia (eg, interrogation of copy number, and loss-of-heterozygosity via single nucleotide polymorphism [SNP]-based comparative genomic hybridization [CGH] microarray analysis)
 - **DBT** (dihydrolipoamide branched chain transacylase E2) (eg, maple syrup urine disease, type 2), full gene sequence

81207 - Tier 2; level 8

- Analysis of 26-50 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of >50 exons, sequence analysis of multiple genes on one platform

 - **ABCC8** (ATP-binding cassette, sub-family C [CFTR/MRP], member 8) (eg, familial hyperinsulinism), full gene sequence
 - **AGL** (amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase) (eg, glycogen storage disease type III), full gene sequence
 - **AHI1** (Abelson helper integration site 1) (eg, Joubert syndrome), full gene sequence
 - **CACNA1A** (calcium channel, voltage-dependent, P/Q type, alpha 1A subunit) (eg, familial hemiplegic migraine), full gene sequence
 - **CHD7** (chromodomain helicase DNA binding protein 7) (eg, CHARGE syndrome), full gene sequence
 - **COL4A4** (collagen, type IV, alpha 4) (eg, Alport syndrome), full gene sequence

81208 - Tier 2; level 9

- Analysis of >50 exons in a single gene by DNA sequence analysis

 - **COL4A5** (collagen, type IV, alpha 5) (eg, Alport syndrome), full gene sequence
 - **DMD** (dystrophin) (eg, Duchenne/Becker muscular dystrophy), full gene sequence
 - **DYSF** (dysferlin, limb girdle muscular dystrophy 2B [autosomal recessive]) (eg, limb-girdle muscular dystrophy), full gene sequence
 - **FBNI** (fibrillin 1) (eg, Marfan syndrome), full gene sequence
What do you do if your genes/analytes are not listed?

- 81479
- You cannot self assign
- You cannot use multiples of 81479
- Submit a coding change proposal (CCP)

Coding Change Proposal (CCP)

- Form available on AMA website
- References to document clinical validity
- Clinical vignette
- Description of service

Clinical vignette and description of service

Example: BRAF (eg, colorectal carcinoma) gene analysis, V600E variant

Clinical Vignette

- A 54-year-old man with metastatic colorectal carcinoma is being considered for targeted therapy with an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in combination with cetuximab. Initial molecular studies indicate the tumor does not contain any of 12 common KRAS mutations at codons 12 or 13. A tumor-rich tissue sample is submitted for BRAF gene mutation testing.

Description of Service

- Paraffin is removed and high quality DNA is isolated from the patient’s tumor tissue. DNA is subjected to PCR amplification for exon 15 of the BRAF gene. The PCR products undergo bidirectional dideoxynucleotide chain termination sequencing on a capillary electrophoresis instrument. The pathologist or other qualified healthcare professional evaluates the electropherograms to identify nucleotide sequence variants. The pathologist or other qualified healthcare professional compiles a report which specifies the patient’s mutation status. The report is edited, signed and the results are communicated to appropriate caregivers.
Parameters for Analyte Assignment

- In the case of Mendelian and somatic disorders, there is a demonstrated relationship between biomarker and phenotype (ie, clinical validity).
- Biomarkers (eg, SNPs) that have an association but not a proven causative effect to a known clinical phenotype(s) should have high clinical usefulness (eg, high positive predictive value, high negative predictive value, directing therapy). At least two U.S. laboratories are performing the analysis, unless proprietary (eg, intellectual property) issues exist.
- The analysis involves ≥ 10 variants identified in unrelated families. Multiple reports of the same variant may be included.
- For dup/del assessment for Tier 2 code assignment the following guidelines will be used:
 - Search GeneTests database. If ≥ 10% of disease alleles are associated with dup/del and at least two dup/dels are documented, place dup/del for analyte on Tier 2 list.
 - If BioBase HGMD® Professional database search identifies ≥ 10% of variants that are associated with dup/del (gross deletion or insertion variants/total number of BioBase® variants reported), place dup/del for analyte on Tier 2 list.

From CCP

Where does NGS/Multi-Gene panels fit?

- AMP submitted a Coding Change Proposal (CCP)
 - Multi-gene panels
 - Quantitative genomic sequence analysis
 - Exome genomic sequence analysis
 - Genome genomic sequence analysis

 Separates report and interpretation from analytes
 Provides mechanism for re-analysis

- AMA convened an open meeting for all to discuss
- AMA developed new CPT codes and will be available in 2015

NGS/Multi-gene Panels

- Aortic Dysfunction
- Nonsyndromic Hearing Loss
- X-Linked Intellectual Disability
- Inherited Colon Cancer
- Fetal Chromosomal Aneuploidy
- Targeted Neoplastic Genomic Sequence
- Whole Mitochondrial
- Whole Exome/Genome

www.ama-assn.org
MAAAs

• CMS announced that MAAA codes will be gapfilled if the Medicare contractor determines that the code is payable under the CLFS.

Questions

• Why didn’t each gene get its own code?
 Not enough available CPT codes
• Can a code be moved from Tier 2 to Tier 1
 Yes; has to be requested by a Coding Change Proposal and approved by the AMA

REIMBURSEMENT
Physician fee schedule (PFS) vs. Clinical lab fee schedule (CLFS)

• Background
 Molecular “stacking” codes were on CLFS
 The RUC recommended PFS
 • Specialty Society Relative Value Update Committee (RUC) =
 AMA multi-specialty committee tasked with making relative
 value recommendations to CMS for new and revised codes, as
 well as annually updating relative value units (RVUs) to reflect
 changes in medical practice
 Federal laws related to physician practice
 • MD vs PhD
 • Copays
 • Anti kickback rules
 • Physician signature requirements
 • CMS placed all new Tier 1 and Tier 2 codes on CLFS

PFS vs. CLFS – Physician practice

• 42 CFR 415.130 Physician pathology services. The carrier pays for
 pathology services furnished by a physician to an individual beneficiary
 on a fee schedule basis only if the services meet the conditions for
 payment in § 415.102(a)* and are one of the following services:
 (1) Surgical pathology services.
 (2) Specific cytopathology, hematology, and blood banking services
 that have been identified to require performance by a physician and
 are listed in program operating instructions.
 (3) Clinical consultation services that meet the requirements in
 paragraph (c) of this section.
 (4) Clinical laboratory interpretative services that meet the requirements
 of paragraphs (C)(1), (c)(3), and (c)(4) of this section and that are
 specifically listed in program operating instructions.

 * 415.102(a) requires the services be ordinarily performed by a physician and
 directly contribute to the diagnosis of an individual patient.

PFS vs. CLFS – other requirements

• Placement of MolPath CPT codes on PFS:
 Labs would have to collect 20% copays.
 Special signature rules not required of clinical laboratory tests, and
 Medicare policies regarding physician kickbacks and purchased test rules
 different than those for clinical laboratory tests, and
 Pathology tests are paid on a different, and much lower fee schedule, in
 the Medicare Hospital Outpatient setting, whereas clinical laboratory
 tests are paid on the same clinical laboratory fee schedule in this
 setting.
 Indirect costs would be assigned on the basis of all pathologist indirect
 costs, including hospital-based pathologists and the mean indirect
 costs of pathology tests, dominated by the routine preparation of
 paraffin blocks and slides. These indirect costs likely far below the
 indirect expense of a molecular diagnostics center, with far more
 expensive staff, development, and QC costs.
Coding for Physician Interpretation and Reporting

- CMS created Healthcare Common Procedure Coding System (HCPCS) code 00452 (Molecular pathology procedure; physician interpretation and report) effective Jan 1, 2013
- This code allows physicians (MDs) to bill for interpretation and reporting services that go beyond the technical reporting of test results
- The code CANNOT be billed by non-physician geneticists or other lab personnel
 The rates established for the Tier 1 and Tier 2 codes are meant to account for work performed by non-physician personnel, including PhD-certified geneticists
- In 2013, this code is reimbursed at $18.71 under the Medicare Physician Fee Schedule (MPFS)

2 methods for CMS to determine reimbursement

- Crosswalk
- Gapfill

Crosswalking

- If test is comparable to an existing test
- CMS sets reimbursement of new test to existing test
- Assigned a local fee and corresponding National Limitation Amount (NLA)
Gapfilling

- CMS determines no adequate comparable
- Medicare carriers are instructed to Gapfill

Empirical process based on local pricing patterns
Medical Directors may meet and share information regarding the new test, though cannot reach a formal consensus.

Timeline

April 30, 2013 - CMS posted interim contractor-specific amounts online.

60-day comment period on interim amounts (May-June 2013)

CMS posts final contractor-specific amounts and National Limitation Amounts (NLA) online

CMS sets the NLA for each CPT code at the median of the contractor specific amounts

Reconsideration requests accepted for 30 days

Final NLAs were made effective January 1, 2014 for the entire country.

CMS posted Gapfill rates Tier1

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>Description</th>
<th>National Mid</th>
<th>National Mean</th>
<th>National Min</th>
<th>National Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>81225</td>
<td>Blood (whole) lysis, intervention genes, leukocytes, transmembrane analysis, major</td>
<td>$279.00</td>
<td>$279.00</td>
<td>$279.00</td>
<td>$279.00</td>
</tr>
<tr>
<td>81226</td>
<td>Blood (whole) lysis, intervention genes, leukocytes, transmembrane analysis, minor</td>
<td>$179.00</td>
<td>$179.00</td>
<td>$179.00</td>
<td>$179.00</td>
</tr>
</tbody>
</table>

Gapfill rates, con't

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>Description</th>
<th>National Mid</th>
<th>National Mean</th>
<th>National Min</th>
<th>National Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>81214</td>
<td>BRCA1 (breast cancer 1) (eg, hereditary breast and ovarian cancer) gene analysis; 7.1kb duplication (ITD) variants (ie, exons 14, 15)</td>
<td>$167.17</td>
<td>$167.17</td>
<td>$167.17</td>
<td>$167.17</td>
</tr>
<tr>
<td>81215</td>
<td>FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia), gene analysis, internal tandem duplication (ITD) variants (ie, exons 14, 15)</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
</tr>
<tr>
<td>81216</td>
<td>IGK@ (Immunoglobulin kappa light chain locus) (eg, leukemia and lymphoma), gene rearrangement analysis $404.83</td>
<td>$404.83</td>
<td>$404.83</td>
<td>$404.83</td>
<td>$404.83</td>
</tr>
<tr>
<td>81217</td>
<td>IGH@ (Immunoglobulin heavy chain locus) (eg, leukemias and lymphomas), variable region somatic mutation $272.15</td>
<td>$272.15</td>
<td>$272.15</td>
<td>$272.15</td>
<td>$272.15</td>
</tr>
<tr>
<td>81218</td>
<td>BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocation analysis; other breakpoints, qualitative or quantitative $221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
</tr>
<tr>
<td>81219</td>
<td>JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis, p.Val617Phe (V617F) variant $198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
</tr>
<tr>
<td>81220</td>
<td>KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene) (eg, carcinoma) gene analysis, variants in codons 12 and 13 $198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
</tr>
<tr>
<td>81221</td>
<td>BRAF (v-raf murine sarcoma viral oncogene homolog B1) (eg, colon cancer), gene analysis, qualitative or quantitative $221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
</tr>
<tr>
<td>81222</td>
<td>F2 (prothrombin, coagulation factor II) (eg, hereditary hypercoagulability) gene analysis; 20210G>A variant $89.84</td>
<td>$89.84</td>
<td>$89.84</td>
<td>$89.84</td>
<td>$89.84</td>
</tr>
<tr>
<td>81223</td>
<td>Comparative analysis using Short Tandem Repeat (STR) markers; patient and comparative specimen (eg, 800bp), each specimen $285.17</td>
<td>$285.17</td>
<td>$285.17</td>
<td>$285.17</td>
<td>$285.17</td>
</tr>
<tr>
<td>81224</td>
<td>Comparative analysis using Short Tandem Repeat (STR) markers; patient and comparative specimen (eg, 800bp), each specimen $285.17</td>
<td>$285.17</td>
<td>$285.17</td>
<td>$285.17</td>
<td>$285.17</td>
</tr>
<tr>
<td>81225</td>
<td>JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis, p.Val617Phe (V617F) variant $198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
</tr>
<tr>
<td>81226</td>
<td>KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene) (eg, carcinoma) gene analysis, variants in codons 12 and 13 $198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
<td>$198.97</td>
</tr>
<tr>
<td>81227</td>
<td>BRAF (v-raf murine sarcoma viral oncogene homolog B1) (eg, colon cancer), gene analysis, qualitative or quantitative $221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
<td>$221.09</td>
</tr>
</tbody>
</table>
Gapfill rates, con't

<table>
<thead>
<tr>
<th>#/CPC</th>
<th>Description</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>61286</td>
<td>Apoptosis cysteine protease activity, matrix metalloproteinase gene analysis, common variants (eg, MMP1, 2, 3, 7, 9, 11, 12)</td>
<td>Test</td>
<td>$205.00</td>
</tr>
<tr>
<td>61315</td>
<td>Apoptosis, caspase, or protease activity, analysis of T cell antigen receptor (eg, leukemia and lymphoma), gene analysis</td>
<td>Test</td>
<td>$68.16</td>
</tr>
<tr>
<td>61316</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, alpha-1-antitrypsin deficiency), gene analysis</td>
<td>Test</td>
<td>$88.26</td>
</tr>
<tr>
<td>61317</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, *S and *Z) SERPINA1 (serpin peptidase inhibitor, clade A, alpha-1 antiproteinase, antitrypsin, member 1) syndrome) gene analysis; duplication/deletion variants</td>
<td>Test</td>
<td>$58.84</td>
</tr>
<tr>
<td>61318</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, Cowden syndrome, PTEN harmatoma tumor syndrome) gene analysis; known familial variants</td>
<td>Test</td>
<td>$605.24</td>
</tr>
<tr>
<td>61319</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, Cowden syndrome, PTEN harmatoma tumor syndrome) gene analysis; full gene sequence</td>
<td>Test</td>
<td>$223.34</td>
</tr>
<tr>
<td>61320</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, Cowden syndrome, PTEN harmatoma tumor syndrome) gene analysis; full sequence analysis</td>
<td>Test</td>
<td>$186.01</td>
</tr>
<tr>
<td>61321</td>
<td>Apoptosis, caspase, or protease activity, T cell antigen receptor (eg, leukemia and lymphoma), gene analysis, common variants (eg, Cowden syndrome, PTEN harmatoma tumor syndrome) gene analysis; full sequence analysis</td>
<td>Test</td>
<td>$126.20</td>
</tr>
<tr>
<td>61322</td>
<td>Apoptosis, caspase, or protease activity, quantitative $434.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61323</td>
<td>Apoptosis, caspase, or protease activity, PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), qualitative</td>
<td>Test</td>
<td>$303.43</td>
</tr>
<tr>
<td>61324</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), qualitative</td>
<td>Test</td>
<td>$168.00</td>
</tr>
<tr>
<td>61325</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative $475.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61326</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$475.00</td>
</tr>
<tr>
<td>61327</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$290.01</td>
</tr>
<tr>
<td>61328</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$152.86</td>
</tr>
<tr>
<td>61329</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$130.51</td>
</tr>
<tr>
<td>61330</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$261.02</td>
</tr>
<tr>
<td>61331</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$651.12</td>
</tr>
<tr>
<td>61332</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$250.00</td>
</tr>
<tr>
<td>61333</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$150.00</td>
</tr>
<tr>
<td>61334</td>
<td>Apoptosis, caspase, or protease activity, PML/RARalpha, (t(15;17)), (PML-RARA regulated adaptor molecule 1) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), quantitative</td>
<td>Test</td>
<td>$130.00</td>
</tr>
<tr>
<td>61335</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); one antigen equivalent (eg, B*27), each</td>
<td>Test</td>
<td>$60.00</td>
</tr>
<tr>
<td>61336</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); one antigen equivalent (eg, B*27), each</td>
<td>Test</td>
<td>$303.64</td>
</tr>
<tr>
<td>61337</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); one antigen equivalent (eg, B*27), each</td>
<td>Test</td>
<td>$330.84</td>
</tr>
<tr>
<td>61338</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61339</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61340</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61341</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61342</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61343</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61344</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61345</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61346</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61347</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61348</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61349</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61350</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61351</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
<tr>
<td>61352</td>
<td>Apoptosis, caspase, or protease activity, testing for HLA Class I and II typing, low resolution (eg, antigen equivalents); HLA-DRB1/3/4/5 and -DQB1</td>
<td>Test</td>
<td>$275.56</td>
</tr>
</tbody>
</table>
Medicare Administrative Contractors (MACs)

Consolidated A/B MAC Jurisdictions

Proposed MAC Gapfill Rates

• Many of the MACs appear to have coordinated on their proposed gap-fill rates
• Although some MACs (such as Palmetto) established payment rates for individual analytes assigned to each Tier 2 code, CMS did not include them in their release (http://www.palmettohumana.com/MolPath/MolDX.nsf/DocsCat/MolDX%2520Website%2520By%2520Topic%2520Covered%2520Tests?open&navmenu=Browse%2520By%2520Topic)
• CMS hasn’t finalized reimbursement levels for any Tier 2 codes. MACs will continue to establish pricing for tests that fall in this coding category.

Summary

• The complete revision of the MolPath CPTs has had a huge impact on reimbursement for molecular pathology assays